Modelling And Simulation of Flat Plate Solar Collector Encompasses of Phase Change Material

Authors

  • Norhuda Abdul Manaf Department of Chemical and Environmental Engineering, Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia
  • Brandon Department of Chemical and Environmental Engineering, Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia
  • Minh Tri Luu Department of Chemical and Environmental Engineering, Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia
  • Ali Abbas School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney NSW

Keywords:

Phase change materials, thermal energy storage, thermal conductivity, solar, flat plate solar collector, enhanced PCM

Abstract

This paper studies the performance of flat plate solar collector (FPC) encapsulated with phase change material (PCM) using first principle mathematical model. PCM discretized equation based on latent heat and sensible heat were derived and implemented in MATLAB software for simulation. Different number of tubes (NT) of the PCM heat exchanger design and three types of PCMs with addition of different carbon material (paraffin, paraffin enhanced A, and paraffin enhanced B) were selected to evaluate the performance of PCM in FPC during charging and discharging processes. Heat transfer and efficiency of the FPC encapsulated with PCM are evaluated throughout these processes. Based on the simulation analysis, FPC design with 4 NT was the least efficient although it had the greatest heat transfer rate due to having higher heat transfer fluid (HTF) velocity which resulting in higher Reynolds numbers and heat transfer coefficient. FPC design with 12 NT which having efficiency of 0.84 and shorter PCM solidification time found to be the most promising design and beneficial in practice. Among three different PCMs, paraffin enhanced B with thermal conductivity of 3 W/m.K which having efficiency of 0.92 found to be the most promising PCM to be encapsulated with FPC. Besides, the discharging time of paraffin enhanced additive B was 3.8 times shorter than pure paraffin wax. The findings acquired from this study is valuable in identifying the practicality of integrated PCM with conventional FPC which utilize the PCM latent heat thermal energy storage (LHTES) as sustainable energy technology.

References

Abd. Aziz, P. D., Wahid, S. S. A., Arief, Y. Z., & Ab. Aziz, N. (2016). Evaluation of solar energy potential in Malaysia. Trends in Bioinformatics, 9(2), 35–43. DOI: https://doi.org/10.3923/tb.2016.35.43

Statistics, E. (2019). Handbook Malaysia Energy Statistics. https://meih.st.gov.my/documents/10620/bcce78a2-5d54-49ae-b0dc-549dcacf93ae

Choi, D. H., Lee, J., Hong, H., & Kang, Y. T. (2014). Thermal conductivity and heat transfer performance enhancement of phase change materials (PCM) containing carbon additives for heat storage application. International Journal of Refrigeration, 42, 112–120. DOI: https://doi.org/10.1016/j.ijrefrig.2014.02.004

Kim, S., Jeong, H., Park, J. Y., Baek, S. Y., Lee, A., & Choi, S. H. (2019). Innovative flat-plate solar collector (FPC) with coloured water flowing through a transparent tube. RSC advances, 9(42), 24192–24202. https://doi.org/10.1039/c9ra03442k

Nithyanandam, K., & Pitchumani, R. (2014). Optimization of an encapsulated phase change material thermal energy storage system. Solar Energy, 107, 770–788. DOI: https://doi.org/10.1016/j.solener.2014.06.011

Barreneche, C., Solé, A., Miró, L., Martorell, I., Fernández, A. I., & Cabeza, L. F. (2013). Study on differential scanning calorimetry analysis with two operation modes and organic and inorganic phase change material (PCM). Thermochimica Acta, 553, 23–26. DOI: https://doi.org/10.1016/j.tca.2012.11.027

Sandali, M., Boubekri, A., Benhamza, A., Settou, B., Halassa, D., & Mennouche, D. (2017). A simulation study of a solar collector using phase change materials for air heating application needs. AIP Conference Proceedings, 1814. DOI: https://doi.org/10.1063/1.4976229

Khan, M. M. A., Ibrahim, N. I., Mahbubul, I. M., Muhammad. Ali, H., Saidur, R., & Al-Sulaiman, F. A. (2018). Evaluation of solar collector designs with integrated latent heat thermal energy storage: A review. Solar Energy, 166(March 2017), 334–350. DOI: https://doi.org/10.1016/j.solener.2018.03.014

Mehrali, M., Latibari, S. T., Mehrali, M., Metselaar, H. S. C., & Silakhori, M. (2013). Shape-stabilized phase change materials with high thermal conductivity based on paraffin/graphene oxide composite. Energy Conversion and Management, 67, 275–282, DOI: https://doi.org/10.1016/j.enconman.2012.11.023

Shi, J. N., Ger, M. Der, Liu, Y. M., Fan, Y. C., Wen, N. T., Lin, C. K., & Pu, N. W. (2013). Improving the thermal conductivity and shape-stabilization of phase change materials using nanographite additives. Carbon, 51(1), 365–372. DOI: https://doi.org/10.1016/j.carbon.2012.08.068

Huang, Z., Gao, X., Xu, T., Fang, Y., & Zhang, Z. (2014). Thermal property measurement and heat storage analysis of LiNO3/KCl - expanded graphite composite phase change material. Applied Energy, 115, 265–271. DOI: https://doi.org/10.1016/j.apenergy.2013.11.019

Cheng, X., Li, G., Yu, G., Li, Y., & Han, J. (2017). Effect of expanded graphite and carbon nanotubes on the thermal performance of stearic acid phase change materials. Journal of Materials Science, 52(20), 12370–12379. DOI: https://doi.org/10.1007/s10853-017-1350-9

Du, R., Li, W., Xiong, T., Yang, X., Wang, Y., & Shah, K. W. (2019). Numerical investigation on the melting of nanoparticle-enhanced PCM in latent heat energy storage unit with spiral coil heat exchanger. Building Simulation. 869–879. DOI: https://doi.org/10.1007/s12273-019-0527-3

Anusha, G., & Kishore, P. S. (2017). Heat Transfer Analysis of Gasketed Plate Heat Exchanger. October, 8–13. DOI: https://doi.org/10.17950/ijer/v5s12/1215

Lin, S. C., Al-Kayuem, H. H., & Aris, M. S. Bin. (2012). Experimental Investigation on the Performance enhancement of Integrated PCM-Flat Plate Solar Collector. DOI: https://doi.org/10.3929/jas.2012.2390.2396

Nithyanandam, K., Pitchumani, R., & Mathur, A. (2014). Analysis of a latent thermocline storage system with encapsulated phase change materials for concentrating solar power. Applied Energy, 113, 1446–1460. DOI: https://doi.org/10.1016/j.apenergy.2013.08.053

Thirugnanam.C, M. . (2013). Experimental Analysis of Latent Heat Thermal Energy Storage using Paraffin Wax as Phase Change Material. International Journal of Engineering and Innovative Technology (IJEIT), 3(2), 372–376.

Bellan, S., Gonzalez-Aguilar, J., Romero, M., Rahman, M. M., Goswami, D. Y., Stefanakos, E. K., & Couling, D. (2014). Numerical analysis of charging and discharging performance of a thermal energy storage system with encapsulated phase change material. Applied Thermal Engineering, 71(1), 481–500. DOI: https://doi.org/10.1016/j.applthermaleng.2014.07.009

El Qarnia, H. (2009). Numerical analysis of a coupled solar collector latent heat storage unit using various phase change materials for heating the water. Energy Conversion and Management, 50(2), 247–254. DOI: https://doi.org/10.1016/j.enconman.2008.09.038

Alva S, L. H., González, J. E., & Dukhan, N. (2006). Initial analysis of PCM integrated solar collectors. Journal of Solar Energy Engineering, Transactions of the ASME, 128(2), 173–177. DOI: https://doi.org/10.1115/1.2188532

Fang, G., Li, H., Yang, F., Liu, X., & Wu, S. (2009). Preparation and characterization of nano-encapsulated n-tetradecane as phase change material for thermal energy storage. Chemical Engineering Journal, 153(1–3), 217–221. DOI: https://doi.org/10.1016/j.cej.2009.06.019

Ren, W., Cao, L., & Zhang, D. (2020). Composite phase change material based on reduced graphene oxide/expanded graphite aerogel with improved thermal properties and shape-stability. International Journal of Energy Research, 44(1), 242–256. DOI: https://doi.org/10.1002/er.4900

Jin, Y., Wan, Q., & Ding, Y. (2015). PCMs heat transfer performance enhancement with expanded graphite and its thermal stability. Procedia Engineering, 102, 1877–1884. DOI: https://doi.org/10.1016/j.proeng.2015.01.326

Li, M., Chen, M., Wu, Z., & Liu, J. (2014). Carbon nanotube grafted with polyalcohol and its influence on the thermal conductivity of phase change material. Energy Conversion and Management, 83, 325–329. DOI: https://doi.org/10.1016/j.enconman.2014.04.002

Luu, M. T., Milani, D., Nomvar, M., & Abbas, A. (2020). A design protocol for enhanced discharge exergy in phase change material heat battery. Applied Energy, 265(February), 114801. DOI: https://doi.org/10.1016/j.apenergy.2020.114801

Duraković, B. (2020). PCM-Based Building Envelope Systems - Innovative Energy Solutions for Passive Design. DOI: https://doi.org/10.1007/978-3-030-38335-0

Elmozughi, A. F., Solomon, L., Oztekin, A., & Neti, S. (2014). Encapsulated phase change material for high temperature thermal energy storage - Heat transfer analysis. International Journal of Heat and Mass Transfer, 78, 1135–1144. DOI: https://doi.org/10.1016/j.proeng.2015.01.326

Published

01-12-2022

How to Cite

[1]
“Modelling And Simulation of Flat Plate Solar Collector Encompasses of Phase Change Material”, AJPC, vol. 1, no. 2, pp. 1–9, Dec. 2022, Accessed: Oct. 11, 2025. [Online]. Available: https://mypcs.com.my/journal/index.php/ajpc/article/view/13

Similar Articles

1-10 of 16

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)