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Abstract: Fault detection and classification using the Deep Learning method, which is the Long Short-
Term Memory (LSTM) model, presents an effective approach for enhancing the reliability and 
efficiency of Steam Methane Reforming (SMR) processes. The timely detection and accurate 
identification of faults in the SMR process are crucial for minimizing disruptions and optimizing 
productivity in hydrogen production. LSTM models are particularly suitable for this task, as they can 
continuously monitor key process variables such as temperature, pressure, and gas composition to 
detect anomalies. This study develops an LSTM-based fault detection and classification framework for 
SMR processes, implemented using MATLAB. To generate the necessary process data, a simulation of 
the SMR process is first conducted using Aspen Plus, followed by the extension of the steady-state 
model to Aspen Dynamics for dynamic simulation. The faults considered in this study include 
variations in methane flow rate, steam flow rate, heat duty, and reactor temperature. The monitored 
conditions are hydrogen production and reactor outlet temperature. Based on these parameters, 
process data corresponding to both normal and faulty conditions is generated. The first LSTM model 
is employed for fault detection, with the data labeled according to its operational state (normal or 
faulty). A second LSTM model is then used for fault classification, wherein the labeled data is 
categorized based on fault types or normal operations. The classification results demonstrate that the 
LSTM-based approach offers superior fault detection and classification performance, improving 
system reliability, safety, and operational efficiency. 
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1. Introduction 

Hydrogen energy has the potential to replace fossil fuels as a significant source of energy. Hydrogen 
functions as an environmentally friendly and adaptable medium for energy, rendering steam methane 
reforming (SMR) a pivotal procedure in addressing the escalating need for sustainable energy 
alternatives. Steam methane reforming (SMR) is a chemical process that entails the reaction between 
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methane and steam, conducted under precise conditions, resulting in hydrogen gas and carbon 
monoxide generation [1]. 

The process of SMR is a multifaceted and intricate industrial procedure that necessitates 
meticulous regulation and ideal circumstances to achieve efficient hydrogen production [2]. 
Deficiencies or anomalies in the functioning of the SMR (Steam Methane Reformer) can result in 
diminished operational efficiency and potential safety risks. Hence, implementing efficient fault 
detection and classification systems in SMR processes is of utmost importance to uphold operational 
reliability, enhance productivity, and guarantee the safety of personnel and equipment[3] 

Monitoring key process variables and detecting anomalies or deviations from expected values 
constitutes fault detection using the LSTM model in SMR. Typically, this requires continuous 
temperature, pressure, gas flow rates, and composition monitoring via sensors and data acquisition 
systems [4]. Any anomalies or malfunctions can be swiftly identified by comparing real-time 
measurements to predetermined thresholds or statistical models. Classifying faults using LSTM models 
in SMR requires training the model on historical data comprising normal operating conditions and 
instances of various fault categories. The LSTM model learns the data’s patterns and associations, 
allowing it to distinguish between normal and aberrant conditions. Once the model has been trained, 
it can classify new or real-time data samples into particular fault categories. 

This study focuses on developing a methane steam reforming (SMR) simulation process using 
Aspen Plus and a fault detection and classification model for the Methane Steam Reforming (SMR) 
process using the LSTM model. The result of this study is implementing a MATLAB program to label 
faulty conditions (Fault = 1; Normal = 0), thus establishing the framework for a fault detection system. 
Then, LSTM is applied to classify the fault condition based on the established labeled data.  
 
2. Materials and Methods 

2.1. Process Description of SMR 
Methane from natural gas is regarded as a feedstock. This procedure is illustrated in Figure 1. At 

1000°C and 2 atm, the methane-only natural gas stream at 25°C and 1 atm is mixed with vapor. Based on 
the reference, the respective mass discharge rates for steam and methane are 8,000 kg/day and 2550 
kg/day [9]. Through the utilization of hot flue gas and a heat exchanger, the gas mixture is heated to 
700°C. Following this, the gas mixture is introduced into the SMR reactor at an isothermal temperature 
of around 700°C and one atmosphere. By employing a Ni-based catalyst, methane and vapor in the 
reactor are converted to carbon monoxide and hydrogen. In this study, Aspen Plus software was used 
to develop the SMR process simulation model. During the model development, The ENRTL-RK model 
was used as the global thermodynamic model in this simulation, while the RKSMHV2 model was used 
for the MSR and WGS reactors. This thermodynamic model is applied to compositions of non-polar and 
polar compounds combined with a light gas. 
 

 
Figure 1. Process flow diagram of hydrogen production from methane. 
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2.2. Data Generation 
Two sets of requirements must be satisfied. The first set demonstrates the program’s behavior when 
everything is functioning ordinarily. The second group consists of four experiments conducted when 
the mode is unexpected. This conclusion is based on the fact that a single defect alters the normal 
working condition. The defect scenarios selected for this study were among the most likely to occur in 
the reactor. Therefore, in this study, we have chosen to study the following faults as tabulated in Table 
1. 

 
Table 1. Description of Process Faults in the SMR. 

 
 

3. Results and Discussion 

3.1. Simulation Model 

The Aspen Plus simulation of the Steam Methane Reforming (SMR) process is presented in Figure 
2. The process begins with mixing natural gas (NG) and steam, which then undergoes pre-treatment 
in the B1 unit before entering the reformer, where methane reacts with steam at elevated temperatures 
and pressures to produce hydrogen and carbon monoxide. The product stream is cooled in multiple 
heat exchangers (COOLER1 to COOLER4) to recover and recycle heat, enhancing energy efficiency. 
Following cooling, the stream passes through the Water Gas Shift (WGS) reactor, where carbon 
monoxide reacts with steam to form carbon dioxide. The system employs heat exchange and cooling 
units (HEATXA, HEATXB, HEATXC, HEATXD) to maintain optimal reaction conditions. The final 
product streams are separated and directed through various processing units, including separators and 
additional cooling units, yielding hydrogen-rich output while minimizing waste. The integration of 
heat recovery and cooling systems throughout the process ensures a sustainable and efficient hydrogen 
production operation. 

 

 
Figure 2. Aspen Plus modeling of Steam Methane Reforming. 
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3.2. Sensitivity Analysis 

A sensitivity analysis is performed to ascertain the extent of sensor bias that might result in a breach of 
the operational limitations. The analysis is conducted through a heuristic approach, where various 
sensor biases are simulated under steady state base case conditions. Bias, as described by [10], refers to 
the divergence from the steady state condition of the base case. The minor sensor bias will prompt the 
process to transition to a different steady state condition. However, if the bias is substantial, the process 
will be unable to accommodate this disturbance, ultimately resulting in the system becoming 
uncontrollable and exceeding the operational limit. The results of the analysis are summarized and 
depicted in Figure 3. 

 

 
a) Sensitivity analysis for the steam flowrate is increased and decreased by 10% and 40% 

 
b) Sensitivity analysis for the methane flow rate is increased and decreased by 10% and 40% 

Figure 3. Sensitivity Analysis for Steam Methane Reforming. 
 

3.3. Fault Data Generation 

Steam flow rate, methane flow rate, reactor heat duty, and jacket reactor temperature data generation 
take 90 times longer. Data collecting requires careful preparation and execution, including using 
sensors and monitoring equipment to capture different operational circumstances and accurately 
portray real-world scenarios. A complete dataset is needed to train a deep learning model with steam 
and methane flow rates, reactor heat duty, and temperature fluctuations. 

    Figure 4 shows the four input graphs showing methane flow rate, steam flow rate, heat duty, and 
jacket reactor temperature, and the two output graphs showing H2 production and outlet reactor 
temperature. These graphs show pivotal variables’ dynamic interactions in operational contexts. These 
oscillations and patterns in input parameters affect output variables, revealing the system’s behavior. 
Based on this carefully created dataset, an LSTM fault detection system is highly relevant. 

 

Figure 4. Data Generation from Aspen Dynamic. 
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3.3. Fault Detection 

      LSTM model fault identification involves evaluating temporal patterns in generated data to find 
unusual behavior that suggests chemical process flaws. Figure 5 shows two different plots: the faulty 
profile (MV1 to Mv4) and the fault effect profile. For the faulty profile, the values between -1 and 1 
indicate normal operating conditions, whereas those beyond this range indicate abnormal conditions 
(or Faults). The effect of this fault can be observed at H2 Production variation, and Rector Outlet 
Temperature changes. In this case, the LSTM model learns to identify the normal and fault conditions 
and assigns it the label FAULT or NORMAL. If any MV1, MV2, MV3, or MV4 has output exceeding the 
specified range, it would be considered FAULT. The NORMAL condition is only when all the MVs are 
within the normal operating range. After these detecting and labeling process conditions, another LSTM 
model is needed to classify the process condition.  

 

 

a) Faulty data MV1 (CH4 Flowrate), MV2 (H2O Flowrate) and MV3 (Heat Duty Reactor) 

 

b) Faulty data MV4 (Temp Jacket Reactor), Fault effect (H2 Production), and Fault effect (Rector 
Outlet Temperature) 

Figure 5. Fault Detection results. 

 
3.4. Fault Classification 

Figure 6 presents the classification model’s LSTM training profile and confusion matrix. The 
training profile shows exceptional outcomes with an overall accuracy of around 95% and a constantly 
sustained loss below 0.5%. For the classification task, the model is trained using process data as input, 
and the labeled data as output. The results from the model would be the classified fault condition, 
whether normal or fault. The confusion matrix in the figure provides a detailed assessment of the 
classification model’s performance by comparing the predicted class labels against the true class labels. 
The matrix is divided into four distinct quadrants: True Positives (TP), True Negatives (TN), False 
Positives (FP), and False Negatives (FN). In this case, the True Positives, which represent the correctly 
predicted true class instances, are recorded as 14,310, while the True Negatives, which correspond to 
the correctly predicted false class instances, are 690. Notably, there are no instances of False Positives 
or False Negatives, indicating that the model did not make any incorrect predictions, whether by 
classifying a false instance as true or a true instance as false. 

 

 

Figure 6. LSTM Training Profile (left) and Confusion matrix of fault classifier (right). 
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4. Conclusions 

      This research has succeeded in simulating and detecting faults within the Steam Methane Reforming 
(SMR) process. By utilizing Aspen Plus and Aspen Dynamic, a comprehensive simulation model was 
developed, offering valuable insights into the dynamic behavior of the SMR process and laying the 
groundwork for optimizing operations and further analysis. A MATLAB program was developed to label 
faulty conditions. The development of a Fault Detection and Classification model for the SMR process, 
leveraging Long Short-Term Memory (LSTM) neural networks, represents a key achievement in fault 
detection and classification. The model demonstrates an impressive accuracy rate in correctly 
identifying and classifying fault conditions in the hydrogen production and reactor temperature output. 
The next step would be to implement a fault diagnosis technique to identify the root cause of the fault. 
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