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Abstract: This work aims to develop a passivity-based control method for a non-isothermal 

homogeneous reaction system by integrating its partially decoupled dynamics based on the concept 

of reaction variants/invariants with the tracking-error-based strategy in the framework of port-

Hamiltonian (PH) representation. More precisely, the original reactor dynamics is transformed into 

an alternative model, expressed in terms of enthalpy, reaction-variant and reaction-invariant states, 

using a linear transformation, associated with a stoichiometric matrix. From this, it is shown that 

without using any state or input coordinate transformations, the transformed reactor model can be 

formulated into an extended class of PH systems with a unified quadratic storage function usable for 

control design. An irreversible first-order reaction system having multiple steady states and occurring 

in a continuous stirred tank reactor is utilized to illustrate the proposed control method. Simulations 

show that the closed-loop system is globally exponentially stabilized at the desired equilibrium point. 

Keywords: Non-Isothermal Reactors, Reaction Variant and Invariants, Nonlinear System, Port-

Hamiltonian Approach. 

 

1. Introduction 

In industry, continuous stirred tank reactors (CSTRs) are widely used to synthesize high-value 

products such as fine chemicals and polymers. From the viewpoint of  mathematical modeling, they can 

be described by a set of ordinary differential equations (ODEs) that express material and energy 

balances [1, 2]. Moreover, the dynamics of CSTRs are driven by mutual interactions of physicochemical 

processes such as reaction kinetics and transport phenomena, thereby causing nonlinear characteristics 

such as steady-state multiplicity and non-minimum phase behavior [2-4]. Therefore, the set-point 

regulation and the stabilization of complex reaction systems at the desired equilibrium point are 

challenging yet interesting in process system engineering.  

In recent years, the port-Hamiltonian (PH) framework for control design has been applied to 

regulate reaction systems in [5-9]. However, finding a suitable Hamiltonian function with structural 

matrices of the closed-loop systems may be difficult because it depends on the solvability of partial-
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derivative matching equations [10, 11]. Therefore, instead of employing the original reactor model, we 

propose to transform it to an alternative model, expressed in terms of reaction-variant and reaction-

invariant states in the sense of [12, 13] and obtained via a linear-time-invariant (LTI) transformation. It 

is important to note that this approach has two following advantages: (1) it reduces the necessary 

number of state variables to describe the system, and (2) the resulting controller relies more on the 

measurement rather than the information of the kinetic model, as compared to other estimator-based 

control approaches [14]. Due to the pertinence of this reduced model to analysis and control design, 

this paper shall integrate it with the tracking-error passivity-based control in the framework of PH 

representation, derived in [15, 16], to stabilize a non-isothermal CSTR having a steady state multiplicity 

behavior at the desired equilibrium point. This is the main contribution of this work.  

The remaining of this paper is organized as follows. Section 2 briefly presents the mathematical 

model of a first-order irreversible reaction system in a CSTR and the tracking-error-based control 

method using an extended class of PH systems. The main results are developed in Section 3, including 

the control design to regulate the partially decoupled dynamics of the CSTR, expressed in terms of 

reaction-variant and reaction-invariant states, while simulations in Section 4 illustrate the designed 

controller. Finally, the conclusion is given in Section 5. 

2. Preliminary 

2.1. Dynamical model of a non-isothermal chemical reactor 

In this work, we consider a first-order irreversible reaction, synthesizing the product B  from the 

reactant A  and taking place in a CSTR with one inlet stream and one outlet stream as shown in Figure 

1. Also, its stoichiometry is given as follows [17]: 

 
r

1 1 2 2( ) ( )vv A S v B S⎯⎯→   (1) 

where 1v and 2v are the signed stoichiometric coefficients, considered to be negative for the reactant 

A , i.e. 1 0v  , and to be positive for the product B , i.e. 2 0v  . Besides, the species 3( )I S is inert, 

having a role as a solvent of the reaction system; hence, its stoichiometric coefficient, denoted by 3v , 

is equal to zero, i.e. 3 0v = . Next, the following assumptions are made throughout the paper to model 

the reaction system [3, 18]. 

 

Figure 1: Schematic view of a non-isothermal chemical reactor 

(A1) The mixing process inside the reactor is perfect and the reacting mixture is ideal as well as 

incompressible. 

(A2) The CSTR operates under isobaric conditions; that is, the pressure of the reaction system 

remains unchanged under the pressure of the surroundings.  

(A3) The volume of the reacting mixture, denoted by V , is kept unchanged, i.e. const.V = , 

leading to the operating constraint: 

  
u ( ) u ( )

( ) 0.
( )

in out

in

t t
t

V m t



= =   (2) 
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(A4) The amount of heat exchanged between the vessel jacket and the reacting mixture, denoted 

by  ( )exq t , can be modelled as follows: 

  ( )( ) ( ) ( ) ,ex Jq t T t T t= −  (3) 

Where  is the heat transfer coefficient, ( )JT t and ( )T t  are the jacket temperature and the 

reactor one, respectively. 

(A5) The reaction rate, denoted by r ( )v t , can be described by the mass-action law as follows: 

  ( ) 1

1
r ( ) k ( ) n ( ),v t T t t

V
=  (4) 

where the function ( )k ( )T t is expressed by the Arrhenius equation as follows: 

 ( ) 0k ( ) k exp ,
( )

aE
T t

RT t

 −
=  

 
 (5) 

with the kinetic constant 0k , the activation energy E  and the ideal gas constant R .  

Under Assumption (A1) – (A5), the mathematical model of the reaction system, including a set of 

material and energy balance equations, can be written in the following compact form: 

 
T

0(t) = r ( ) u ( ) ( ) ( ) (0),n N W n n nv in int t t t+ − =  (6) 

 0( ) ( ) u ( ) ( ) ( ) (0),ex in inH t q t h t t H t H H= + − =  (7) 

with 
u ( )

( )
( )

out t
t

m t
 = , where  

•  
T

1 2 3( ) n ( ) n ( ) n ( )n t t t t= is the vector of the number of moles at the time t ,  

• ( )H t is the total enthalpy of the reacting mixture at the time t , 

•  1 2 0N v v=  is the constant stoichiometric matrix,  

• 
T

,1 ,2 ,3w w wwin in in in
 =   is the constant inlet-composition vector 

• h in is the constant specific enthalpy of the inlet flow, calculated by 

,1 ,2 ,3 win in in in inh h h h =    with 
, , 1,2,3in ih i = being the molar enthalpy of the species i  

evaluated at the inlet temperature inT , 

• u ( )in t  and u ( )out t are the mass flow rates of inlet and outlet flows, respectively, 

• ( )m t is the total mass of the reacting mixture. 

Remark 1: The total enthalpy ( )H t  can be computed as follows [19, 20]:  

 
3

1

( ) n ( ) ( ),i i

i

H t t h t
=

=  (8) 

where ( ), 1,2,3ih t i =  is the component molar enthalpy of the species of each element in the outlet 

stream at the time t . In addition, since the reacting mixture is ideal and incompressible under 

Assumption (A1), ( ), 1,2,3ih t i =  can be represented as follows:  

 ( ), ,( ) ( ) ,i ref i p i refh t h c T t T= + −  (9) 

with 
, ,,ref i p ih c  and 

refT being the constant reference molar enthalpy and the heat capacity of the 

species i  and the reference temperature, respectively. 

Remark 2: From the energy balance (7), the time derivatives of ( )T t  can be expressed as follows: 

 
( ) T( ) ( ) W u ( ) ( ) r ( )

( ) ,
( )

ex in p in in v

P

q t T T t t H t t
T t

c t

+ − −
=

c
 (10) 
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Where ( )
T

T T T( ) : ( ) ( )N H Nref p refH t t T t T  = =  + −
 

h c  with  
T

1 2 3( ) ( ) ( ) ( )t h t h t h t=h

represents the vector of reaction enthalpies at the time t . Also,
T( ) : ( )nP pc t t= c  with 

T

,1 ,2 ,3p p p pc c c =  c is the time-varying heat capacity of the reacting mixture; therefore, it is 

always positive and bounded [21]. 

 

2.2 Tracking-error passivity-based control approach using an extended class of port-Hamiltonian models 

We consider here a dynamical system that is affine in terms of the control input, and its dynamics 

can be given as follows: 

 0( ) ( ( )) ( ( )) ( ), (0) ,Gt t t t= + =x f x x u x x  (11) 

where ( )tx  is the state vector over the operating region 
nD  and ( ) nf x  is a smooth vector-

valued function concerning the vector field x . Also, ( ) mt u is the control input and 

( )G
m nx  are the full-rank input-to-state matrix with m n .  

It is assumed that ( )f x verifies a so-called separability condition [6, 9, 11], that is, it can be 

decomposed and expressed in the following form:  

  
H( )

( ) ( ) ( ) ,J R


= −


x
f x x x

x
 (12) 

where ( )J x  and ( )R x are the n n  structural matrices, representing the skew-symmetric 

interconnection matrix and the symmetric damping matrix, respectively, i.e. 
T( ) ( )J J= −x x  and 

T( ) ( )R R=x x , while 
0H( ) : n n

→x is called a Hamiltonian function. On this basis, the 

dynamics of ( )tx  (11) together with the output 
T H( )
( )G(t) :


=



x
y x

x
 can be formulated in the 

following form: 

 

 

T

H( )
( ) ( ) ( ) ( ( )) ( ),

H( )
( ) .

J R G

G

t t t

(t)


= − + 


 =

 

x
x x x x u

x

x
y x

x

 (13) 

Clearly, if the matrix ( )R x is positive semi-definite, i.e. ( ) 0R x , the system dynamics (13) belongs 

to a class of non-relaxing PH systems, denoted by 
,e nrH . Additionally, the time derivatives of H( )x

fulfills the dissipation inequality as follow: 

   
( )

( )
( )

T

T T
H ( ) H ( )

H( ) ( ) ( ) ( ) ( ) ( ),
( ) ( )

t t
t R t t t t t

t t

  
= − +  

  

x x
x u y u y

x x
 (14) 

which proves that the system dynamics (13) is passive with the input ( )tu , the output (t)y  and the 

storage function H( )x [22]. On the other hand, if the matrix ( )R x is negative semi-definite, i.e. 

( ) 0R x , or indefinite, the system dynamics (13) belongs to a class of relaxing PH systems, denoted 

by 
,e rH . Moreover, 

,e nrH and 
,e rH are clearly two disjoint classes, that is,

, ,e nr e r =H H ; 

therefore, their combination defines an extended class of PH systems denoted by eH , i.e. 

, ,e nr e r e =H H H , which is usable for designing a tracking-error PBC, as shown in the following 

lemma [15, 16, 23, 24].  

Lemma 1: Assume that the system dynamics (11) can be formulated into an extended class of PH 

systems (13), i.e. ( ) et  Hx , with the quadratic Hamiltonian function ( )( )t x being of the following 

form:       

 ( ) T1
( ) : ( ) ( ),

2
dit t t =x x R x  (15) 
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where diR is an arbitrary constant positive-definite symmetric matrix, and the reference trajectory 

( )d tx is governed by the following differential equation: 

 ( ) ( ) ( ) ( ) ( )
H( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ,J R Gd
d I

d

e
t t t t t t

e

 
= − + +    

x
x x x R x x u x

x

H
 (16) 

with 
T1

( )
2

di=H e e R e , where  ( ) : ( ) ( )dt t t= −e x x is defined as the error state vector and ( )IR x  

is a symmetric matrix, i.e. 
T( ) ( )I I=R x R x , for tuning feedback laws. Then,  

i. when 
,( ) e nrt Hx , there is a global exponential convergence of ( )tx  towards ( )d tx , if 

( )IR x is chosen to be positive definite, i.e.  

 ( ) 0I R x . (17) 

ii. Otherwise, when 
,( ) e rt x H , the system trajectory ( )tx  globally asymptotically approaches 

the reference trajectory ( )d tx , if the following condition: 

 ( )
T

( ) ( ) ( ) ( ) 0 0,I I+ = +  R x R x R x R x  (18) 

is satisfied 

Proof: The proof can be found in [15, 16]. 

Remark 3: To obtain the feedback law ( )tu  with dim m=u , we only need to select suitably 

m components of ( ) n

d t x  and assign a desired trajectory, stabilized at the set-point, to them such 

that the resulting m m  submatrix ( )Gd t , extracted from ( ( ))G tx  and having m  rows with 

respect to m  chosen elements of ( )d tx , is of full-rank [15, 16].      

3. Main Results  

3.1 The partially decoupled dynamics of reaction system via the concept of reaction variant and invariant 

It can be seen from the enthalpy balance (7) that the dynamics of ( )H t  is independent of the 

reaction rate r ( )v t  and thus it can be considered as a reaction invariant. We, therefore, propose to 

decompose the space of ( )n t  into two parts, including the one of reaction-variant states, denoted by 

y ( )r t , and the one of reaction-invariant states, denoted by 
T

,1 ,2( ) : y ( ) y ( )yiv iv ivt t t =   , in the 

sense of [12, 13]. It is important to note that y ( )r t  is a scalar quantity, and its dynamics contains 

information of the reaction rate r ( )v t , while the dynamics of ( )yiv t  is independent of the reaction 

rate r ( )v t . Moreover, the decomposition is implemented by using a size-preserving linear 

transformation  , associated with the stoichiometric matrix N , as shown in the following lemma. 

Lemma 2: The transformation from the space of ( )n t  to the one of reaction-variant and reaction-

invariant states, denoted by ( )y t , is expressed by: 

 
y ( )

( ) : ( ),
( )

y n
y

r

iv

t
t t

t

 
= =  
 

 (19) 

where the matrix   is given by: 

 
1

2 1

1
0 0

.
0

0 0 1

v

v v

 
 
  =

− 
 
 

 (20) 

Moreover, the dynamics of ( )n t , given by (6), is transformed to  



ASEAN Journal of Process Control 2024, vol. 3, issue 2 6 of 12 

( ) 1
1

1 1

y ( ) k ( ) y ( ) u ( ) ( ) y ( ),
M

r r in r

w
t v T t t t t t

v
= + −  

1,0y (0) n ,r = −  (21) 

1 2
,1 2 1 ,1

1 2

y ( ) u ( ) ( ) y ( ),
M M

iv in iv

w w
t v v t t t

 
= − − 
 

 
,1 2 1,0 1 2,0y (0) n n ,iv v v= −  (22) 

3
,2 ,2

3

y ( ) u ( ) ( ) y ( ),
M

iv in iv

w
t t t t= −  

,2 3,0y (0) n ,iv =  (23) 

 

Proof: From (19) and (20), it is straightforward to obtain ( ) ( ),y nt t=  which allows obtaining 

(21), (22), and (23) immediately 

Remark 4: Since the matrix   is non-singular, ( )n t  can be reconstructed from ( )y t  as follows: 

 
1( ) ( ),n yt t−=   (24) 

with 

1

1

2

1

0 0

1
0

0 0 1

v

v
v

−

 
 

−  =
 
 
 

. 

 

It can be seen from (22) and (23) that, due to ( ) 0t  , the dynamics of ( )yiv t globally 

exponentially converges to the equilibrium point 
T

,1 ,2( ) : y yyiv iv ivt  =   , computed as follows:  

 1 2
,1 2 1

1 2

y ,
M M

iv in

w w
v v V 
 

= − 
 

  (25) 

 3
,2

3

y ,
M

iv in

w
V=  (26) 

by using (2), (20) and (23). As a result, ( )yiv t can be excluded from the partially decoupled dynamics 

of the CSTR, expressed by (21), (22) and (23), to reduce the model dimension for the purpose of control 

design. On this basis, the reduced transformed model can be expressed in terms of the vector

 
T

( ) : y ( ) ( )rt t H t=x  as follows: 

 ( ) 1
1

1 1

y ( ) k ( ) y ( ) u ( ) ( ) y ( ),
M

r r in r

w
t v T t t t t t

v
= + −  (27) 

 ( ) ( ) h u ( ) ( ) ( ).ex in inH t q t t t H t= + −  (28) 

The control objective can be stated as follows. Let 
T

1 2 3n n nz H =    represent the 

desired equilibrium point of the reaction system (1), corresponding to the equilibrium point 
T

,1 ,2y y yr iv iv H    of the partially decoupled dynamics. The control objective here is to design 

the feedback laws  
T

( ) = u ( ) ( )in ext t q tu to stabilize the reduced partially decoupled dynamics, 

given by (27) and (28), at the desired equilibrium point
T

yr H =  x . 

3.1. Hamiltonian view on the partially decoupled dynamics of the non-isothermal chemical reactors 

The following proposition gives the PH representation of the dynamics of ( )tx , given by (27) and 

(28). 

Proposition 1: The decoupled dynamics can be formulated into a non-relaxing PH representation 

with the state vector ( )tx  and the quadratic Hamiltonian function ( ) T1

2
 =x x x  as follows: 
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   ( )
H( )

( ) ( ) ( ) ( ),J R Gd

d

t t t t


= − +


x
x x u

x
 (29) 

where the matrix ( )( )G tx is given by ( )
1

1 1

0
M( )

h 1

G

in

w

vt

 
 

=  
  

x  and the structural matrices are 

expressed by: 

 2 2J 0 = and 
1( ) k( ( )) 0

( )
0 ( )

R
t v T t

t
t





− 
=  
 

. (30) 

Proof: Clearly, the dynamics of ( )tx , given by (27) and (28), can be formulated into (29). More 

importantly, the matrix ( )R t  is always positive definite owing to the physical meaning of k( ( ))T t , 

derived from (5), and 1 0v  , leading to 
,( ) e nrt x H . The latter completes the proof. 

3.2. Controller synthesis 

The feedback laws to stabilize the dynamics of ( )tx  at x  is designed by applying Lemma 1 for 

the non-relaxing PH system (29), which is shown in the following proposition. 

Proposition 2: Let the reference trajectory 
T

,( ) y ( ) ( )d r d dt t H t =  x be governed by 

   ( ) ( )
H( )

( ) ( ) ( ) ( ) ( ) ( ),J R R Gd
d I d

d

t t t t t t


= − + − +


x
x x x x u

x
 (31) 

where ( ),1 ,2diag , 0R I I IR R=   is the constant damping injection. Then, by using the following 

feedback laws, calculated by: 

 ( ) ( )( ) ( )1 1
1 , 1 , ,1 ,

1

M
u ( ) y y ( ) ( ) k ( ) y ( ) y ( ) y ( ) ,in r r d r d I r r d

v
t K t t v T t t R t t

w
 = − + − − −   (32) 

 
( ) ( )2 ,2( ) ( ) ( ) ( ) ( ) h u ( )

( ) ( ) ,
d d I d in in

J

K H H t t H t R H t H t t
T t T t





− + − − −
= +  (33) 

the system trajectory ( )tx  globally exponentially converges to the reference trajectory ( )d tx , which 

can be assigned as: 

 ( )( ) ( ) ,Kd dt t= −x x x  (34) 

with ( )1 2diag , 0K = K K   being a tuning matrix, if the matrix R I is chosen to be positive definite, 

that is, 

 0.R I   (35) 

Proof: It follows immediately from Proposition 1 that the stability condition for the exponential decay 

of ( )tx  towards ( )d tx , governed by (31), is given by (35) owing to 
,( ) e nrt x H . Furthermore, by 

assigning the dynamics of ( )d tx  to the exponential profile generated by (34), the feedback laws u ( )in t  

and ( )exq t  can be calculated by (32) and (33), respectively, which ensures the stabilization of ( )tx  at 

x . The latter completes the proof. 

4. Simulations 

For the sake of simulation, the stoichiometric coefficients 1v  and 2v  are given as 1 1v = −  and 

2 1v = , and the reaction system (1) is initiated at one of three following conditions: 
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• (IC1): 1,0n 0.06(mol)= , 
2,0n 0.03(mol)= , 

3,0n 2(mol)=  and 280(K)T = , 

• (IC2): 1,0n 0.04(mol)= , 
2,0n 0.001(mol)= , 

3,0n 2.5(mol)=  and 330(K)T = , 

• (IC3): 1,0n 0.01(mol)= , 
2,0n 0.01(mol)= , 

3,0n 3.5(mol)=  and 355(K)T = . 

Moreover, the CSTR is operated with the nominal operating conditions: u 0.466in =  (g/s) and 

290JT = (K). Other operating and physical parameters of the CSTR are listed in Table 1. 

 

Table 1. Physical and operating parameters of the first-order reaction system 

Symbol Quantity Value Unit 

,1href
 Reference enthalpy of the species A  42.7085 10−   J.mol-1 

,2href
 Reference enthalpy of the species B  51.1884 10−   J.mol-1 

,3href
 Reference enthalpy of the species C  33−  J.mol-1 

,1pc  Heat capacity of the species A  221.9  J.(K.mol)-1 

,2pc  Heat capacity of the species B  128.46  J.(K.mol)-1 

,3pc  Heat capacity of the species C  21.694  J.(K.mol)-1 

1M  Molecular weight of the species A  50  g/mol 

2M  Molecular weight of the species B  50  g/mol 

3M  Molecular weight of the species C  18  g/mol 

aE  Activation energy 73350  J.mol-1 

R  Ideal gas constant 8.314  J.(K.mol)-1 

refT  Reference temperature 298.15  K 

  Heat transfer coefficient 0.5  W/K 

inT  Temperature of the inlet stream 370  K 

in  Specific density of the inlet stream 667.14  g/ℓ 

V  Volume of the reacting mixture 0.1  ℓ 

 

It is clearly shown in Figure 2 that the reaction system has three different equilibrium points, 

expressed by 1, 2, 3,n n ni i i i iP T =   . Additionally, their values are given by: 

•  1 0.151 0.009 3.26 299.37 ,P =  

•  2 0.108 0.053 3.26 322.55 ,P =  

•  3 0.005 0.156 3.26 381.89 ,P =  

which are closely similar to the values obtained in [18], thereby validating their pertinence for control 

design in this work. Moreover, the system trajectories starting from (IC1) and (IC2) approach 1P , while 

the trajectory starting from (IC3) approaches 3P . Therefore, 1P  and 3P  are locally stable steady states, 

while 2P  is an unstable one. In practice, 2P is the desired equilibrium point of the reaction system 

since it can comprimise both economic benefit and engineering constraints. However, the reactor can 

not be stabilized at 2P  without the feedback control. Consequently, in what follows, the feedback 

laws, given by (32) and (33), are used to stabilize the reactor at 2P , which is the setpoint of the closed-

loop system. 
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To implement the closed-loop system, all state variables of the reaction system are assumed to be 

measurable, and the control parameters are practically tuned to support the admissibility feature of 

manipulated variables with respect to time [5, 25], that is,  

 ( ) 00t = =u u  (36), 

where 
T

0 ,0 ,0uin JT =  u  is a selected constant vector at the time 0t = , and enhance the control 

performance of the closed-loop system, including the transient responses of state variables and the 

amplitude and variation rates of manipulated variables. Therefore, with 
,0u 0.094in = (g/s) and 

,0 308.8(K)JT = , we can choose
3 3

,1 ,22 10 , 10I IR R− −=  =  and 
3

1 2 3 10K K −= =  . Moreover, the 

control performance of the closed-loop system under the proposed PBC is compared with that of under 

the PI control, for the design method is represented in Appendix A and the control comparamters are 

finely tuned to fulfill the constrain (36) with  
T

0,PI 0.094 308.8=u . 

The closed-loop phase plane in Figure 3 represents that the system trajectories starting from three 

initial conditions globally asymptotically converge to the desired equilibrium point 2P  under the 

proposed PBC. Also, as shown in Figure 4, the dynamics of y ( )r t  and ( )H t  are globally exponentially 

stabilized at the desired equilibrium values, which, therefore, guarantees the convergence of ( )n t  and 

( )T t  towards the respective desired equilibrium values. Furthermore, it can be clearly seen from 

Figure 5 that although both two controllers can stabilize the closed-loop system at the desired 

equilibrium point, the time responses of 
1 2 3n ,n ,n and T under the proposed PBC are less oscillatory 

than that of under the PI control. In addition, the actual control inputs: u ( )in t  and ( )JT t  computed 

by the PI control give more oscillations, thereby needing more control actions, as given in Figure 6. As 

a result, one can conclude that the control performance is superior with the proposed PBC than PI 

control. 

 
Figure 2. The representation of open-loop phase plane. 
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Figure 3. The representation of closed-loop phase plane. 

 

 
Figure 4. Dynamics of the reaction variant and the enthalpy. 

 
Figure 5. Time responses of the system trajectories: - (IC2) with the proposed control, - (IC3) 

with the proposed control, -- (IC2) with the PI control, -- (IC3) with the PI control. 
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Figure 6. The control inputs: - (IC2) with the proposed control, - (IC3) with the proposed control, -

- (IC2) with the PI control, -- (IC3) with the PI control. 

5. Conclusions 

In this work, a tracking-error PBC is designed within the framework of PH representation for the 

partially decoupled dynamics of a CSTR, obtained by a size-preserving linear transformation. The 

transformed reactor model, expressed in terms of reaction-variant and reaction-invariant states, is then 

formulated into a non-relaxing PH representation. The tracking-error approach addressed the 

stabilization problem of system trajectories at the desired equilibrium point, i.e., assigning a certain 

structure for the reference trajectory with an appropriate damping injection. Simulations show that the 

designed controller is workable. An extension of the control method to stabilize tubular reactors and 

multiphase-stirred tank reactors will be part of our future work. 

 

Appendix A: PI control design 

The PI controller in this research is designed by the approach derived by [26]. And, its expression 

is given by ( ) ( )
0

t

P Iu u K x x K x x dt= + − + − , where x and u are the output and the input, 

respectively. Besides, u is the nominal values, x is the set point, PK and IK  are tuning parameteres, 

listed in Table A.1 for the second and the third initial conditions. 

Input x  
IC2 IC3 

u  
PK  IK  u  

PK  IK  

,PIuin
 0.1076−  16−  238.46  0.65  11.5−  118.29  0.69  

,PIexq  36.772 10−   16000  2.13  0.01  11300  1.16  0.01  
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